Announcements

1) HW 2 - Webwork portion due Friday, rest due Tuesday
2) Quiz next Thursday, Covering today's and Monday's material

General setup for integrating factors

Start with a linear equation

$$
a_{1}(x) \frac{d y}{d x}+a_{2}(x) y=a_{3}(x)
$$

Put this in standard form by dividing both sides by $a_{1}(x)$:

We get

$$
\frac{d y}{d x}+\frac{a_{2}(x)}{a_{1}(x)} y=\frac{a_{3}(x)}{a_{1}(x)}
$$

(watch out for $a_{1}(x)=0!$)
Let $P(x)=\frac{a_{2}(x)}{a_{1}(x)}$,
$Q(x)=\frac{a_{3}(x)}{a_{1}(x)}$. Were
Solving $\frac{d y}{d x}+P(x) y=Q(x)$

Multiply by the integrating factor $M(x)$.

$$
\mu(x) \frac{d y}{d x}+\mu(x) P(x) y=\mu(x) Q(x)
$$

What is $M(x)$?
We want the left hand side to be the derivative of a product.

Need: $\mu^{\prime}(x)=\mu(x) P(x)$

Then

$$
\frac{\mu^{\prime}(x)}{\mu(x)}=P(x),
$$

and integrating,

$$
\ln \mu(x)=\int P(x) d x,
$$

$$
\mu(x)=e^{S P(x) d x}
$$

Now to solve the problem, integrate both sides of

$$
\begin{aligned}
\mu(x) Q(x) & =\underbrace{\mu(x) \frac{d y}{d x}+\mu(x) P(x) y} \\
& =\frac{d}{d x}(\mu(x) y)
\end{aligned}
$$

by our choice of $\mu(x)$.
So
So

Example 1: Solve

$$
t^{2} \frac{d x}{d t}+3 t x=t^{4} \ln (t)+1
$$

if $x(1)=4 / 3$
First, divide by t^{2} to get

$$
\begin{aligned}
& \frac{d x}{d t}+\frac{3}{t} x=t^{2} \ln (t)+\frac{1}{t^{2}} \\
& P(t)=\frac{3}{t}, Q(t)=t^{2} \ln (t)+\frac{1}{t^{2}}
\end{aligned}
$$

By the general formula,

$$
\begin{aligned}
\mu(t) & =e^{S P(t) d t} \\
& =e^{S \frac{3}{t} d t} \\
& =e^{3 S \frac{1}{t} d t} \\
& =e^{3 \ln (t)} \\
& =e^{\ln \left(t^{3}\right)} \\
& =t^{3}
\end{aligned}
$$

To solve

$$
\frac{d x}{d t}+\frac{3}{t} x=t^{2} \ln (t)+\frac{1}{t^{2}}
$$

multiply both sides by the integrating factor $\mu(t)=t^{3}$.

$$
\begin{aligned}
& t^{3} \frac{d x}{d t}+3 t^{2} x=t^{5} \ln (t)+t \\
= & \frac{d}{d t}\left(t^{3} x\right)=t^{5} \ln (t)+t
\end{aligned}
$$

Integrating both sides with respect to t,

$$
\begin{aligned}
& \int \underbrace{\int \frac{d}{d t}\left(t^{3} x\right)}_{\stackrel{\downarrow}{d t}} d t=\int\left(t^{5} \ln (t)+t\right) d t \\
& =t^{3} x+C=\int\left(t^{5} \ln (t)+t\right) d t
\end{aligned}
$$

Just have to integrate the right-hand side.

$$
\begin{aligned}
& \int\left(t^{5} \ln (t)+t\right) d t \\
= & \int t^{5} \ln (t) d t+\underbrace{\int t d t}_{=\frac{t^{2}}{2}}
\end{aligned}
$$

$\int t^{5} \ln (t) d t$ is integration by parts:

$$
\begin{aligned}
& \text { by parts: } \\
& u=\ln (t) \quad v=t^{6} / 6 \\
& d u=\frac{1}{t} d t \quad d v=t^{5} d t
\end{aligned}
$$

Then the integral is

$$
\begin{aligned}
& \frac{t^{6}}{6} \ln (t)-\int \frac{t^{6}}{6} \cdot \frac{1}{t} d t \\
= & \frac{t^{6}}{6} \ln (t)-\frac{t^{6}}{36} .
\end{aligned}
$$

Putting all this together,

$$
t^{3} x+c=\frac{t^{6}}{6} \ln (t)-\frac{t^{6}}{36}+\frac{t^{2}}{2} 1
$$

So

$$
x=\frac{\frac{t^{6}}{6} \ln (t)-\frac{t^{6}}{36}+\frac{t^{2}}{2}-C}{t^{3}}
$$

Since $x(1)=4 / 3$,

$$
\begin{aligned}
4 / 3 & =\frac{1}{2}-\frac{1}{36}+C \\
C & =\frac{48}{36}-\frac{18}{36}+\frac{1}{36} \\
& =31 / 36
\end{aligned}
$$

